Leveraging temporal properties of news events for stock market prediction
نویسندگان
چکیده
Investors make decisions based on various factors, including consumer price index, price-earnings ratio, and also miscellaneous events reported by newspapers. In order to assist their decisions in a timely manner, many studies have been conducted to automatically analyze those information sources in the last decades. However, the majority of the efforts was made for utilizing numerical information, partly due to the difficulty to process natural language texts and to make sense of their temporal properties. This study sheds light on this problem by using deep learning, which has been attracting much attention in various areas of research including pattern mining and machine learning for its ability to automatically construct useful features from a large amount of data. Specifically, this study proposes an approach to market trend prediction based on a recurrent deep neural network to model temporal effects of past events. The validity of the proposed approach is demonstrated on the real-world data for ten Nikkei companies.
منابع مشابه
Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh
This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively. Furthermore, the study explores the adequate volatility model for the stoc...
متن کاملThe Asymmetric Impact of Weighting Economic and Political Events on the Fluctuations of Banking Group Index (Case of Tehran Stock Exchange)
Stock Exchange Investors have paid more attention to the banking group in recent years so that in many cases, the direction of the banking index has changed the general direction of the market. Therefore, exploring the banking index fluctuation is important from the point of view of investors as well as the direction of the market. The purpose is to examine the effectiveness and direction of ne...
متن کاملUsing Structured Events to Predict Stock Price Movement: An Empirical Investigation
It has been shown that news events influence the trends of stock price movements. However, previous work on news-driven stock market prediction rely on shallow features (such as bags-of-words, named entities and noun phrases), which do not capture structured entity-relation information, and hence cannot represent complete and exact events. Recent advances in Open Information Extraction (Open IE...
متن کاملConsequences of Economic Consequences Strategic Scheduling Announcing Management Profits
Corporates provide different dates for presenting information about financial status and future prospects of corporate to stockholders. Stockholders and stock market participants consider the information obtained from the corporate as good news or bad news and they react on this basis. In recent years, corporate programs have been considered by analysts and accounting researchers in order to ma...
متن کاملStock Market Prediction Using Data Mining
Data mining is well founded on the theory that the historic data holds the essential memory for predicting the future direction. This technology is designed to help investors discover hidden patterns from the historic data that have probable predictive capability in their investment decisions. The prediction of stock markets is regarded as a challenging task of financial time series prediction....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artif. Intell. Research
دوره 5 شماره
صفحات -
تاریخ انتشار 2016